Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Trials ; 23(1): 932, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108882

ABSTRACT

BACKGROUND: COVID-19 poses a global health challenge with more than 325 million cumulative cases and above 5 million cumulative deaths reported till January 17, 2022, by the World Health Organization. Several potential treatments to treat COVID-19 are under clinical trials including antivirals, steroids, immunomodulators, non-specific IVIG, monoclonal antibodies, and passive immunization through convalescent plasma. The need to produce anti-COVID-19 IVIG therapy must be continued, alongside the current treatment modalities, considering the virus is still mutating into variants of concern. In this context, as the present study will exploit pooled diversified convalescent plasma collected from recovered COVID-19 patients, the proposed hyperimmune Anti-COVID-19 intravenous immunoglobulin (C-IVIG) therapy would be able to counter new infectious COVID-19 variants by neutralizing the virus particles. After the successful outcome of the phase I/II clinical trial of C-IVIG, the current study aims to further evaluate the safety and efficacy of single low dose C-IVIG in severe COVID-19 patients for its phase II/III clinical trial. METHODS: This is a phase II/III, adaptive, multi-center, single-blinded, randomized controlled superiority trial of SARS-CoV-2 specific polyclonal IVIG (C-IVIG). Patients fulfilling the eligibility criteria will be block-randomized using a sealed envelope system to receive either 0.15 g/Kg C-IVIG with standard of care (SOC) or standard of care alone in 2:1 ratio. The patients will be followed-up for 28 days to assess the primary and secondary outcomes. DISCUSSION: This is a phase II/III clinical trial evaluating safety and efficacy of hyperimmune anti-COVID-19 intravenous immunoglobulin (C-IVIG) in severe COVID-19 patients. This study will provide clinical evidence to use C-IVIG as one of the first-line therapeutic options for severe COVID-19 patients. TRIAL REGISTRATION: Registered at clinicaltrial.gov with NCT number NCT04891172 on May 18, 2021.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Pneumonia, Viral , Humans , SARS-CoV-2 , Betacoronavirus , Pneumonia, Viral/drug therapy , Immunoglobulins, Intravenous/adverse effects , Coronavirus Infections/drug therapy , Pandemics , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , COVID-19 Serotherapy
2.
EClinicalMedicine ; 36: 100926, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1261877

ABSTRACT

BACKGROUND: Hyperimmune anti-COVID-19 Intravenous Immunoglobulin (C-IVIG) is an unexplored therapy amidst the rapidly evolving spectrum of medical therapies for COVID-19 and is expected to counter the three most life-threatening consequences of COVID-19 including lung injury by the virus, cytokine storm and sepsis. METHODS: A single center, phase I/II, randomized controlled, single-blinded trial was conducted at Dow University of Health Sciences, Karachi, Pakistan. Participants were COVID-19 infected individuals, classified as either severely or critically ill with Acute Respiratory Distress Syndrome (ARDS). Participants were randomized through parallel-group design with sequential assignment in a 4:1 allocation to either intervention group with four C-IVIG dosage arms (0.15, 0.20, 0.25, 0.30 g/kg), or control group receiving standard of care only (n = 10). Primary outcomes were 28-day mortality, patient's clinical status on ordinal scale and Horowitz index (HI), and were analysed in all randomized participants that completed the follow-up period (intention-to-treat population). The trial was registered at clinicaltrials.gov (NCT04521309). FINDINGS: Fifty participants were enrolled in the study from June 19, 2020 to February 3, 2021 with a mean age of 56.54±13.2 years of which 22 patients (44%) had severe and 28 patients (56%) had critical COVID-19. Mortality occurred in ten of 40 participants (25%) in intervention group compared to six of ten (60%) in control group, with relative risk reduction in intervention arm I (RR, 0.333; 95% CI, 0.087-1.272), arm II (RR, 0.5; 95% CI, 0.171-1.463), arm III (RR, 0.167; 95% CI, 0.024-1.145), and arm IV (RR, 0.667; 95% CI, 0.268-1.660). In intervention group, median HI significantly improved to 359 mmHg [interquartile range (IQR) 127-400, P = 0.009)] by outcome day, while the clinical status of intervention group also improved as compared to control group, with around 15 patients (37.5%) being discharged by 7th day with complete recovery. Additionally, resolution of chest X-rays and restoration of biomarkers to normal levels were also seen in intervention groups. No drug-related adverse events were reported during the study. INTERPRETATION: Administration of C-IVIG in severe and critical COVID-19 patients was safe, increased the chance of survival and reduced the risk of disease progression. FUNDING: Higher Education Commission (HEC), Pakistan (Ref no. 20-RRG-134/RGM/R&D/HEC/2020).

3.
Immunotherapy ; 13(5): 397-407, 2021 04.
Article in English | MEDLINE | ID: covidwho-1073248

ABSTRACT

Background: This study assesses the feasibility of producing hyperimmune anti-COVID-19 intravenously administrable immunoglobulin (C-IVIG) from pooled convalescent plasma (PCP) to provide a safe and effective passive immunization treatment option for COVID-19. Materials & methods: PCP was fractionated by modified caprylic acid precipitation followed by ultrafiltration/diafiltration to produce hyperimmune C-IVIG. Results: In C-IVIG, the mean SARS-CoV-2 antibody level was found to be threefold (104 ± 30 cut-off index) that of the PCP (36 ± 8.5 cut-off index) and mean protein concentration was found to be 46 ± 3.7 g/l, comprised of 89.5% immunoglobulins. Conclusion: The current method of producing C-IVIG is feasible as it uses locally available PCP and simpler technology and yields a high titer of SARS-CoV-2 antibody. The safety and efficacy of C-IVIG will be evaluated in a registered clinical trial (NCT04521309).


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19/blood , Immunoglobulins, Intravenous/isolation & purification , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/therapy , Caprylates/chemistry , Chemical Fractionation , Humans , Immunization, Passive , Immunoglobulins, Intravenous/immunology , Immunoglobulins, Intravenous/therapeutic use , COVID-19 Serotherapy
4.
Trials ; 21(1): 905, 2020 Nov 02.
Article in English | MEDLINE | ID: covidwho-901916

ABSTRACT

OBJECTIVES: The aim of this trial is to investigate the safety and clinical efficacy of passive immunization therapy through Hyperimmune anti-COVID-19 Intravenous Immunoglobulin (C-IVIG: 5% liquid formulation), on severe and critically ill patients with COVID-19. TRIAL DESIGN: This is a phase I/II single centre, randomised controlled, single-blinded, superiority trial, through parallel-group design with sequential assignment. Participants will be randomised either to receive both C-IVIG and standard care or only standard care (4:1). PARTICIPANTS: The study is mono-centric with the participants including COVID19 infected individuals (positive SARS-CoV-2 PCR on nasopharyngeal and/or oropharyngeal swabs) admitted in institute affiliated with Dow University Hospital, Dow University of Health Sciences, Karachi, Pakistan. Consenting patients above 18 years that are classified by the treating physician as severely ill i.e. showing symptoms of COVID-19 pneumonia; dyspnea, respiratory rate ≥30/min, blood oxygen saturation ≤93%, PaO2/FiO2 <300, and lung infiltrates >50% on CXR; or critically ill i.e. respiratory failure, septic shock, and multiple organ dysfunction or failure. Patients with reported IgA deficiency, autoimmune disorder, thromboembolic disorder, and allergic reaction to immunoglobulin treatment were excluded from study. Similarly, pregnant females, patients requiring two or more inotropic agents to maintain blood pressure and patients with acute or chronic kidney injury/failure, were also excluded from the study. INTERVENTION AND COMPARATOR: The study consists of four interventions and one comparator arm. All participants receive standard hospital care which includes airway support, anti-viral medication, antibiotics, fluid resuscitation, hemodynamic support, steroids, painkillers, and anti-pyretics. Randomised test patients will receive single dose of C-IVIG in following four dosage groups: Group 1: 0.15g/Kg with standard hospital care Group 2: 0.2g/Kg with standard hospital care Group 3: 0.25g/Kg with standard hospital care Group 4: 0.3g/Kg with standard hospital care Group 5 (comparator) will receive standard hospital care only MAIN OUTCOMES: The primary outcomes are assessment and follow-up of participants to observe 28-day mortality and, • the level and duration of assisted ventilation during hospital stay, • number of days to step down (shifting from ICU to isolation ward), • number of days to hospital discharge, • adverse events (Kidney failure, hypersensitivity with cutaneous or hemodynamic manifestations, aseptic meningitis, hemolytic anemia, leuko-neutropenia, transfusion related acute lung injury (TRALI)) during hospital stay, • change in C-Reactive Protein (CRP) levels, • change in neutrophil lymphocyte ratio to monitor inflammation. RANDOMISATION: Consenting participants who fulfill the criteria are allocated to either intervention or comparator arm with a ratio of 4:1, using sequentially numbered opaque sealed envelope simple randomization method. The participant allocated for intervention will be sequentially assigned dosage group 1-4 in ascending order. Participants will not be recruited in the next dosage group before a set number of participants in one group (10) are achieved. BLINDING (MASKING): Single blinded study, with participants blinded to allocation. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Total 50 patients are randomised. The intervention arms consist of 40 participants divided in four groups of 10 participants while the comparator group consists of 10 patients. TRIAL STATUS: Current version of the protocol is "Version 2" dated 29th September, 2020. Participants are being recruited. Recruitment started on June, 2020 and is estimated to primarily end on January, 2021. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov, NCT04521309 on 20 August 2020 and is retrospectively registered. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1).


Subject(s)
Coronavirus Infections/therapy , Immunization, Passive/methods , Immunoglobulins, Intravenous , Pneumonia, Viral/therapy , Adult , Betacoronavirus/isolation & purification , COVID-19 , Critical Illness/therapy , Female , Humans , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/adverse effects , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Male , Pandemics , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL